Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging

نویسندگان

  • Francesco Longo
  • Isabella Russo
  • Derya R. Shimshek
  • Elisa Greggio
  • Michele Morari
چکیده

The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19months). The motor performance of G2019S KI mice remained stable up to the age of 19months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor phenotype of LRRK2 G2019S carriers in early-onset Parkinson disease.

OBJECTIVE To determine the motor phenotype of LRRK2 G2019S mutation carriers. LRRK2 mutation carriers were previously reported to manifest the tremor dominant motor phenotype, which has been associated with slower motor progression and less cognitive impairment compared with the postural instability and gait difficulty (PIGD) phenotype. DESIGN Cross-sectional observational study. SETTING Th...

متن کامل

Clinical heterogeneity of the LRRK2 G2019S mutation.

BACKGROUND Several pathogenic mutations have been reported in the leucine-rich repeat kinase 2 gene (LRRK2) that cause parkinsonism. The "common" LRRK2 G2019S kinase domain substitution has been reported to account for approximately 5% of familial and 1% of sporadic Parkinson disease. OBJECTIVE To observe the clinical heterogeneity presented by LRRK2 kinase mutation carriers. DESIGN, SETTIN...

متن کامل

LRRK2 G2019S Mutation: Prevalence and Clinical Features in Moroccans with Parkinson's Disease

Background. The LRRK2 G2019S mutation is the most common genetic determinant of Parkinson's disease (PD) identified to date. This mutation, reported in both familial and sporadic PD, occurs at elevated frequencies in Maghreb population. In the present study, we examined the prevalence of the G2019S mutation in the Moroccan population and we compared the motor and nonmotor phenotype of G2019S ca...

متن کامل

Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease. Here, we investigated whether the G2019S LRRK2 mutation causes morphological and/or functional changes at nigro-striatal dopamine neurons. Density of striatal dopaminergic terminals, nigral cell counts, tyrosine hydroxylase protein levels as well as exocytotic dopamine release me...

متن کامل

Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S.

PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2014